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Abstract: The article is concerned with the problem of planning of the amount of sample tests of heat power equipment 

components using time-series techniques. In the operation process of thermoelectric power stations (TPS) their expensive 

components (turbines, bearings, oil systems, generators, transformers, pipelines etc.) require securing of preset level of 

reliability and safety. For achievement of this aim it is necessary to develop corresponding plan of sample tests. Peculiarity of 

heat power equipment components is that they are devices consisting of elements’ totality of mechanical, hydraulic, pneumatic, 

electronic and other types. The basis of the proposed sample tests amount planning technique is the condition of test sample 

restorability after failure through improvements. In this case, the risk of developer (supplier) is assumed to be close to zero (α 

= 0). Improvement will be considered effective if carried out tests are successful in the same amount after improvement. 

Novelty of the proposed test amount planning technique for one preset level of reliability allows getting required output 

characteristics of heat power equipment in shorter period. 
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1. Introduction 

The known techniques of test amount planning are 

applicable to large-scale and mass production, when a large 

number of elements can be put to the test, for example, 

diodes, capacitors, chips, switches, seals, valves, bushings, 

components of heat power equipment are complex expensive 

objects consisting of mechanical, hydraulic, pneumatic and 

electronic elements. As the components of heat power 

equipment is a turbine, which includes components such as: 

generator, oil system, shut-off valve, control valve, steam 

distributor, hydrogen seal, shaft bearings, steam lines. Device 

component developers are specific businesses that need to 

carry tests to confirm a high level of operating safety. 

The basis of the proposed sample test amount planning 

technique is the condition of test sample restorability after 

failure through improvements. In this case, the risk of 

developer (supplier) is assumed to be close to zero α ≈ 0 (for 

example, α = 0.00001). 

The results of analysis and research indicate that the 

proposed technique allows achieving the required level of 

reliability for one or two samples through directional 

improvement.  

 The main difference between the time-series and the fixed 

amount methods is that the number of tests to confirm the 

estimated parameter of the reliability function is a random 

value and is not determined in advance. The essence of the 

time-series techniques is that the hypothesis confirmation (H0 

or H1) depends on the ratio of density functions of the 

estimated parameter. This ratio is called a likelihood ratio, 

which is described below (1): 
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where P1 – acceptable level of failure free operation; 
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P0 – required level of failure free operation; 

F (mi, Θi) – density function of random value; 

mi – failure amount in the i-th aggregate; 

Θ1 – acceptable level of reliability; 

Θ0 – the required level of reliability; 

n – scope of testing. 

At development and manufacturing of expensive 

nondiscardable products like TPS [1] heat power equipment 

it is possible to preset only line of acceptance assuming that 

in the process of design and experimental try-out and batch 

manufacturing product achieves preset level of reliability and 

will be accepted in operation. 

In the test process it is possible to observe how reliability 

varies from product to product (from batch to batch, from 

cycle to cycle) and how various improvements impact on it – 

increase or decrease it. 

2. Test amount Planning Technique 

2.1. Test Amount Planning Technique at One Level of 

Reliability 

Control of reliability level of expensive repairable 

products using time-series techniques with one-sided border 

of one preset level of reliability has been stated in [15].  

It is possible to use time-series techniques with one-sided 

border for control of various reliability indicators: 

probabilities of nonfailure operation, intensity of failures, 

mean time between failures, time between failures and 

others. At this controlled products can be both repairable and 

nonrepairable, mean time between failures can be discrete 

(e.g. number or operation cycles) or continuous (e.g. 

operation time in hours, haul in km etc.) and its distribution 

can be binomial, normal, exponential etc. 

There are various techniques of control of probability R of 

nonfailure operation for executing of one work cycle by 

complex repairable product. Selection of reliability indicator 

as probability of nonfailure operation is connected with that 

probability of nonfailure operation during one work cycle is 

preset more often then other indicators in technical 

requirements on product. 

Consider time-series techniques with one-sided border for 

binomial sampling plan. Research of binomial sampling plan is 

connected with that binomial distribution law of random 

variable (e.g. appearing of failures) is acceptable for majority of 

products working in cycling mode. It is assumed that variable R 

can vary under influence of some reasons, in particular, – under 

causes contributed in construction of product. 

Content of technique consists in the following. Straight 

line – line of acceptance (figure 1) is plotted in coordinates 

N0m (N – number of work cycles of product, m – number of 

failures).  

Parameters h and h/S determine location of line of 

acceptance. 

Тask consists in achievement of required reliability level, 

test plan is composed without rejection boundary, i.e. with 

only one line of acceptance as shown on figure 1.  

 

Figure 1. Graph of time-series analysis with one-sided border. 

At P < S function L (P) = 1, and at P > S function L (P) is 

connected with P by following relation (2). 
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where P – failure probability; h – intersection coordinate of 

acceptance line and failure axis; L (P) – operative 

characteristic. 

So, probability of decision making (only acceptance) 

equals to one at P ≤ S. However at P > S there is certain 

probability of non-decision making at all. In this case, 

probability of decision making is determined by operative 

characteristic L (P). As during tests supplier risk is assumed 

equal to zero then operative characteristic will be equal to 

customer risk (3).  

( ) . β=PL                                     (3) 

It is possible to obtain relation for determination of two 

parameters S and h (4) for acknowledgement of preset 

reliability R = 1 – P with confident probability γ = 1 – β from 

expression (2). 
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It is necessary to find one more relation between 

parameters S and h in order to determine them uniquely. 

There are various ways to obtain this relation. This technique 

has been proposed in the works [6, 15]. Its essence consists 

in the following. It is necessary to determine that at preset 

value of P customer must take certain risk ∆β consisting in 

that product is considered as satisfying the requirements of 

reliability after carrying out of series of consecutive 

successful tests, i.e. (5).  
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where h/S – number of failures to first moment of decision 

making about acceptance. 

Thus, system of two equations (6) is composed for 

determination of acceptance bound. 
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where P – probability of failure at executing of one work 

cycle; 

β – customer risk, i.e. probability of that product which 

reliability doesn’t satisfy the preset requirements will be 

accepted; 

∆β – initial customer risk, i.e. probability of making a 

mistake that product satisfies the preset requirements of 

reliability after carrying out of series of consecutive 

successful cycles from the beginning of tests. 

Preseting values of P, β and ∆β in system of equations, 

location of the acceptance line in the plane N0m is 

determined (ref. figure 1). Test results are marked on 

prepared in that way coordinate grid: horizontal segment of 

unit length is laid off at successful cycle; vertical segment of 

unit length is laid off at failure in cycle. The obtained broken 

line reflecting test results is called trajectory of test process. 

If trajectory crosses acceptance line plotted at preset values 

of P, β and ∆β, it means that preset probability of nonfailure 

operation of one cycle is verified with confidence probability 

γ = 1 – β. It is clear that the higher reliability of product is, 

the less failures are observed during the tests and the flatter 

trajectory of process is. 

At design and experimental try-out and batch 

manufacturing improvement or substitution of failed units for 

new ones are realized for increase of reliability. Trajectory of 

test process of one product at which improvements have been 

realized or several products tested consecutively is 

represented at figure 2. 

 

Figure 2. Trajectory of test process with improvements. 

Analysis of figure shows that change (increase) of 

reliability has been occurred in points (А–С). However it is 

not always obvious that there are good causes to consider 

such change as statistically significant and what guarantees 

that actual increase of reliability has been achieved. Special 

statistical significance tests are used for check of significance 

of reliability change. 

Coordinate grid can be prepared at transparent material 

(celluloid, tracing paper etc.) with the aim of control of 

product reliability during the try-out. This grid has 

acceptance lines for several intermediate values R = 1 – p 

(for example, R = 0.8; 0.9; 0.95;...). This pattern (plane-table) 

is laid on graph of time-series analysis in such a way in order 

that coordinate origin of plane-table would coincides with 

point of last considerable (significant) change of trajectory of 

test process (for example, point C at figure 2) and coordinate 

axes of plane-table would be parallel to general coordinate 

axes. Intersection point of trajectory with acceptance line 

shows that level of reliability respondent to this acceptance 

line has been achieved (figure 3). 
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Figure 3. Trajectory of test process for time-series analysis with assemblage of acceptance lines. 

Notation conventions: straight lines – lines of plane-table; 

m – number of failures; N – number of tests. 

In this way, if plane-table is laid on graph of time-series 

analysis in such a way in order that coordinate origin of 

plane-table would coincides with point 0 then it will be seen 

that trajectory crosses acceptance line R3. Point A is point of 

significant change of reliability (effective improvement has 

been realized here). 

If coordinate origin of plane-table is transferred in point A 

then it will be seen that trajectory crosses acceptance line R4, 

i.e. higher level of reliability has been achieved. 

Graphic representation of time-series technique with one-

sided bound as assemblage of acceptance lines can be used at 

preset low indicators of reliability. It is possible to keep 

control of reliability level directly during tests using such 

graphs. 

As graph is filled up by trajectory of actual control 

depending on at which level trying-out product is at given 

instant, it is possible to stop tests and realize corresponding 

improvements with the aim of reliability increase of this 

product. Such visual control during the tests is exactly that 

essential difference from classical approach, according to 

which they judge about indicators of reliability only after 

realization of full assigned test amount. Graphic 

representation of assemblage of acceptance lines is not quite 

convenient for test products which, as a rule, are subjected to 

a large number of tests and many design improvements and 

also for products with high indicators of reliability in 

consequence of their unhandiness. 

In is necessary to create multitude of graphs at control of 

high indicators of reliability by graph technique what results 

in additional difficulties at their using. In this connection 

coordinates of boundary points belonging to acceptance lines 

are marked on graph instead of plotting of these lines. Such 

solution is more convenient as it eliminates plotting of a large 

number of graphs and their constant filling up during the tests 

and also increases test amount (number of tests) and number 

of failures practically without limit keeping high accuracy of 

results at this [6].  

Consider derivation of equation for acceptance line. The 

system will solve system of equations (6) for that. Finding 

the logarithm of the second equation of this system, will 

obtain (7). 
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From the first equation of the system (6) have (9). 
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Finding the logarithm of the equation (10), will obtain (11) 
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Whence obtain (12). 

. 

1
1

1

β
















−β+

=−

−

ln

P

ln

h

h

S

                       (12) 

From the equation (8) will find (13) 
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From the equation (12) will find (14) 
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After solving the system of equations relatively unknowns 

h and S, will obtain the equation of acceptance line [6] as 

(15). 

, hSNm +=                                 (15) 

where m – number of failures (ordinate axis); N – number of 

test cycles (abscissa axis).  

From the equation (15) will obtain (16). 
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Substitute in the expression (16) value of h from formula 

(14) and will obtain (17). 
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Further, substituting value of S/h from the expression, will 

obtain functional dependence of number of test on number of 

failures at preset values of magnitudes P, β and ∆β finally 

(18). 
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As indicator of reliability is more often preseted as 

probability of nonfailure operation in technical requirements 

then will substitute value R = 1 – p instead of p in formula 

(17) and will obtain expression (19) [6]. 
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Equation (19) is analytic form of expression of consecutive 

binomial sampling plan. Preseting value of failure number m, 

probability R of nonfailure operation of one cycle, customer 

risk β  and initial customer risk ∆β, test amount N is 

determined. Test amounts N (in cycles) for some values of m, 

R, β and ∆β = 0.25β for time-series analysis with one-sided 

bound have been calculated and represented in table 1 

borrowed from the work [1]. 

Example of table using. It is required to determine test 

amount N of control systems of turbine T-100-130 TMZ 

(number of cycles), which is necessary for acknowledgement 

of probability R = 0.9 of nonfailure operation during one 

cycle at confidence probability γ = 1 – β = 0.9, if 5 failures 

have been fixed during the tests. We find N = 112 on table 1.  

It is possible to control reliability level of control systems 

in the process of test carrying out with the help of this table. 

Thus, for example, N = 655 of test cycles have been carried 

out during the tests and 1 failure has been fixed at this. It is 

inquired what probability R has been verified by these tests 

and with what confidence probability γ. Found that R = 0.992 

and γ = 0.95 on table 1. 

It is possible to compose tables of test planning and control 

of reliability level by time-series technique with one-sided 

bound for binomial distribution law with the help of 

computer. The obtained tables are convenient at test planning 

and control of reliability level when one level of reliability 

indicator is presented in the technical requirements. 

Using of time-series technique with one-sided bound at 

binomial distribution law is explained by that product 

between improvements doesn’t subjected to design, 

technological and other changes, i.e. probability of failure 

occurrence in each interval between improvements is 

considered as constant magnitude. Starting from this 

assumption it is possible to keep binomial sampling plan and 

at introduction of improvements. Achievement of preset 

reliability level as a result of carrying out of the last 

improvement is realized with some constant probability P 

(probability of failure occurrence in one cycle). Reliability R 

of product grows from one improvement to another in 

general test pattern, i.e. takes values of R1, R2,..., Rn 

consecutively to required level Rтр, after that tests are 

stopped, and product is accepted to operation. 

Table 1. Calculated values of test amounts N for some preset magnitudes R, m, γ at ∆β = 0.25β. 

Probability R of nonfailure 

operation at one cycle 
Number of failures m 

Test amount N, cycles, at confidence probability γγγγ = 1 – ββββ, equal to 

0.5 0.6 0.7 0.8 0.9 0.95 0.99 

0.500 

1 5 6 6 7 8 9 12 

5 15 15 16 17 19 21 25 

10 26 27 29 30 33 36 41 

20 49 51 53 57 61 66 74 
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Probability R of nonfailure 

operation at one cycle 
Number of failures m 

Test amount N, cycles, at confidence probability γγγγ = 1 – ββββ, equal to 

0.5 0.6 0.7 0.8 0.9 0.95 0.99 

50 118 123 128 135 145 155 173 

100 223 242 252 267 285 303 337 

0.900 

1 32 34 38 43 50 58 75 

5 80 85 91 99 112 124 160 

10 140 148 157 170 189 206 243 

20 261 274 290 311 343 371 428 

50 622 652 688 734 804 866 986 

100 1225 1283 1352 1440 1574 1690 1915 

0.992 

1 411 446 490 552 655 756 984 

5 1019 1083 1162 1268 1438 1596 1934 

10 1778 1879 2002 2164 2416 2646 3122 

20 3298 3472 3681 3954 4373 4747 5498 

50 7256 8249 8720 9326 10245 11050 1265 

100 15453 16211 17117 18280 20030 21555 2460 

0.999 

1 32951 35770 39345 44290 52558 60643 7893 

5 81614 86787 93160 101675 11531 128012 1550 

10 14242 150558 160429 173407 19379 212223 2503 

20 26408 278101 294967 316869 350686 380644 440984 

50 629068 660728 698580 747256 821156 885909 1012628 

100 1273350 1298440 1371208 1464567 1605438 1728018 1965367 

 

2.2. Test Planning with Time-Series Techniques at Two 

Preset Levels of Reliability Indicator for the Poisson 

Distribution Law 

Let consider the time-series techniques with two-sided 

confidence bound and two preset reliability levels for the 

Poisson distribution law in order to reduce the test amount. 

In this case, the logarithm of the likelihood ratio is written as: 

.

eq

eq

ln

!meq

!meq

ln

P

P

ln

n

i

qm

qmn

i i

qm

i

qm

i

i

i

i












=












=







 ∏∏
=

−

−

=
−

−

1 0

1

1 0

1

0

1

0

1

0

1

 

After taking the logarithm of the right part of the equation 

we obtain: 
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where q1 – acceptable failure rate, q1 = λ1t; 

q0 – required failure rate, q0 = λ0t; q1 > q0. 

Then the test stop condition is the fulfillment of 

inequalities (20), (21): 
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where α – supplier risk; 

β – customer risk. 

If the inequality (20) is satisfied after n number of tests, then 

the hypothesis H0 is discarded, i.e. the failure rate is greater 

than the permissible value λ0. If the inequality (21) is satisfied 

after n number of tests, then the hypothesis H0 is accepted, i.e. 

the failure rate is less than or equal to the permissible value λ0. 

Transformation of equations (20) and (21) by pre-marking 
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To determine the average amount of tests at first 

approximation, could take the binomial distribution with the 

parameter q = λt instead of the Poisson distribution law. Then 

the average number of product operational periods to confirm 

the failure rate λ0 is determined by the formula (24): 
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Each period of operation of the product corresponds to the 

duration t, and the total test time will be equal to: 

.tnS 00 =  

Similarly, the average number of product operational 

periods to confirm the failure rate λ1 is from the ratio: 
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a total testing time, respectively, is: 

.tnS 11 =  

Sample. For construction of lines of acceptance acm  and 

refusal rejm , considering that the probability of failure-free 

operation obeys the Poisson's law at the following initial 

data: duration of operation of the device during one cycle t 

= 10 h; α = 0.00001, β = 0.1; λ1 = 12·10
–3

 1/h; λ0 = 10⋅10
–3

 

1/h.  

Determine the average duration of the test to confirm the 

failure rate λ0. 

Decision. To construct rejection and acceptance lines 

(Figure 4), use the formulas (22) and (23), where q1 = λ1t, q0 = 

λ0t: 
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The average number of periods of work is determined by the formula (6): 
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The total time of the test: 

.tnS h 1155000 ==  

 

Figure 4. Line of acceptance and rejection acm and rejm . 

2.3. Test Planning with Time-Series Techniques at Two 

Preset Levels of Reliability Indicator for the Normal 

Distribution law of Mean time Between Failures 

To confirm the specified failure time T0 in the interval (T1 

≤ T ≤ T0) is determined by the average amount of tests by 

sequential analysis with a two-sided confidence bound on the 

expression of the form (25): 
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Accordingly, to confirm the failure time T1, the average 

test volume is according to the formula: 
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of a random variable from a sequence of observations, M 
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Taking σ1 = σ0 = σ, we find the likelihood ratio (27): 
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Logarithm the expression (28): 
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Assume the following assumption: all test periods are the same in time, i.e.. ti = t. In this case, the expression (28) can be 

written as follows (29): 
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Next, substituting the expression (29) into formula (26) and integrating (30): 
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Then, to confirm the mean time between failures T0, 

substitute the expression (30) in (25) and we obtain (31): 
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where n0 – the number of periods of operation of duration T0 

each or the number of failures per time S.  

In this case, the total test volume is (32): 

. 00TnS =                                    (32) 

Based on the expression (29) for the logarithm of the 

likelihood ratio, was write the conditions for acceptance and 

rejection of the hypothesis H0, consisting in the fact that T = T0: 

the rejection of hypothesis H0: 
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Since the number of m failures is fixed in the process of 

testing, the conditions of acceptance and rejection of the H0 

hypothesis can be represented as inequalities (33), (34): 
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Example. To construct lines of acceptance of MPR and 

rejection of MBR, for the normal law of distribution of 

operating time for failure at the following initial data: T0 = 

100 h; T1 = 80 h; σ = 10 h; α = 0.00001, β = 0.1. 

Determine the number of periods of work duration T0 each 

and the total amount of testing. 

Decision. To construct rejection and acceptance lines 

(Figure 5), use the formulas (33) and (34) for some values of 

T0/T1: 
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We define by the formula (31) the number of periods of 

work with duration T0 each: 
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Calculate the total volume of tests according to the formula (14): 

h. 115100151 =⋅= .S  

To confirm the time between failures within T0 = 100 h and T1 = 80 h, it is necessary to conduct a test volume of 115 h. 

 

Figure 5. Line of acceptance and rejection acm and rejm .

2.4. Test Planning of Expensive Discardable Products 

Using Time-Series Techniques for Various Distribution 

Laws at Supplier Risk α = 0 

From practical experiences was know that during the tests 

samples are not rejected, but being improved and retested till 

the desired parameters are reached. Under such conditions 

the supplier risk is considered to be zero α = 0 for the product 

anyways is delivered to customer after failure restoration. 

According to the accepted condition the math expression 

for the acceptance lines and average amount of tests at 

respective distribution laws are described in table 2. 

Mathematical expressions for the lines of acceptance and 

average number of tests with various distributions and α = 0. 

Table 2. The mathematical expressions for the acceptance lines and the average volume of tests at various distribution laws and α = 0. 

Distribution law The condition of acceptance of hypotheses H0 The average number of trials (cycles, hours) 
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Distribution law The condition of acceptance of hypotheses H0 The average number of trials (cycles, hours) 

Poisson's 
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3. Discussion 

During the sample test heat power equipment components 

[1, 2] are not rejected due to their high cost. Once the failure 

origin is identified the failed components are being improved 

and then the test is continued [3-6]. To confirm the 

improvement efficiency the tests are carried out again with 

the same amount. Improvement is efficient if no failure 

occurs during the retest. There are various methods for 

planning test amount, including ones using fixed amount [7-

11]. 

4. Results 

The test amount planning technique for binomial 

distribution law of products at one preset level of reliability 

indicator has been considered. The formulas of test amounts 

for one level and the table of calculated values of test 

amounts for some preset magnitudes (probabilities of 

nonfailure operation, number of failures, confidence 

probability) have been represented. The test amount planning 

technique for normal distribution law of mean time between 

failures and Poisson distribution law for probability of failure 

at two preset levels of reliability indicator has been 

considered. 

Also, foreign authors are engaged in the issues of 

reliability of power equipment. The works of such authors as 

Suleimenov B. A., Agrawal V., Salomon D. [12-14]. 

5. Conclusions 

1. The proposed mathematical model of planning the 

amount of testing at given reliability level at binomial 

distribution law of faultness probability and producer’s 

risk (α=0) can be of research and practical interest for 

expensive CHP power equipment usage, including 

prototype models. 

2. In order to improve CHP powe equipment reliability 

the suggested techniques can be used to determine the 

amount of testing at the given values of faultness 

probability, failure number and confidence level. 

3. In the solution of planning the amount of testing of 

expensive power equipment optimization problem, 

precisely to reduce its amount, the equipment 

reliability model at Poisson and normal distribution 

laws of time between failures at two given reliability 

levels and at minimal (α = 0.00001) and zero 

producer’s risk (α = 0). 

4. In the process of power equipment reliability 

evaluation techniques development the mean amount 

of testing calculation at different distribution laws and 

α = 0 is suggested to prevent computation errors. 

 

References 

[1] Sultanov M. M. Assessment of reliability, extension of service 
life and optimization of repair of thermal power plant 
equipment and power systems. –Volzhsky: Volzhsky branch 
of MPEI , 2016.–100 p. 

[2] Lloyd D., Lipov M. Reliability. –M.: Soviet radio, 1964. – 687 
p. 

[3] Reliability and efficiency in engineering. T. 1. Methodology. 
Organization. Terminology/ Under edition A. I. Rembezy. – 
M.: Engineering, 1986. – 224 p. 

[4] Reliability and efficiency in engineering. T. 6. Experimental 
testing/ Under edition R. S. Sudakova, O. I. Teskina. – M.: 
Engineering, 1989. – 376 p. 

[5] Sultanov M. M., Truhanov V. M. Mathematical model of 
change of output operational characteristics of steam turbines 
of TPP // The reliability and security of energy. –2017. – T. 10, 
№1. – p. 42-47. 

[6] TruhanovV. M. Reliability of engineering products. Theory 
and practice: textbook. – 2nd edition, revised and 
supplemented/ V. M. Truhanov.–M.: Edition «Spektr», 2013. 
– 334 p. 

[7] RD50-650-87. Methodical instructions. Reliability in 
technology. Composition and general rules for setting reliability 
requirements. – M.: Edition of standards, 1988. – 23 p. 

[8] RD 50-109-89. Recommendations. Reliability in technology. 
Ensuring product reliability. Ensuring requirements. –M.: 
Edition of standards, 1989. – 16 p. 

[9] Truhanov V. M. Reliability in technology. M.: Edition 
«Spektr», 2017. – 634 p. 

[10] Sultanov M. M., Truhanov V. M., Arakelyan E. K., Kulikova M. 
A. Methods of achieving and ensuring a high level of reliability 
and safety of power equipment of TPP, HPP, NPP at all stages 
of the life cycle, ISSN: 2312-055X, 2018. – 6-14 p. 

[11] Truhanov V. N., Sultanov M. M. Estimation technique of 
corrective effects for forecasting of reliability of the designed 
and operated objects of the generating systems, ISSN: 1742-
6596, 2017.–1-13 p. 

[12] Truhanov V. M., Sultanov M. M., Kukhtik M. P., Gorban Yu. 
A. Mathematical model of predicting of failures by statistical 
method at testing of prototypes of heat-power equipment of 
power supply systems of TEHS// The reliability and security 
of energy. – 2018. – T. 11, № 3. – p. 235-240. 



 American Journal of Electrical Power and Energy Systems 2018; 7(6): 68-78 78 

 

[13] Suleimenov B. A., Sugurova L. A., Suleimenov A. B., 
Suleimenov A. B., Zhirnova O. V. Synthesis of the equipment 
health management system of the turbine units' of thermal 
powerstations.–MECHANICS & INDUSTRY, 2018. 

[14] Agrawal V., Panigrahi B. K., Subbarao P. M. V. Increasing 
Reliability of Fault Detection Systems for Industrial 
Applications.–IEEE INTELLIGENT SYSTEMS, 2018. 

[15] Salomon D., Motta G. Handbook of data compression.–
Springer Science & Business Media, 2010. 

 

 

 

 


